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The mechanisms of heat and mass transport in a side-heated square cavity filled with 
a near-critical fluid are explored, with special emphasis on the interplay between 
buoyancy-driven convection and the Piston Effect. The Navier-Stokes equations for a 
near-critical van der Waals gas are solved numerically by means of an acoustically 
filtered, finite-volume method. The results have revealed some striking behaviour 
compared with that obtained for normally compressible gases : (i) heat equilibration 
is still achieved rapidly, as under zero-g conditions, by the Piston Effect before 
convection has time to enhance heat transport; (ii) mass equilibration is achieved on 
a much longer time scale by quasi-isothermal buoyant convection; (iii) due to the very 
high compressibility, a stagnation-point effect similar to that encountered in high- 
speed flows provokes an overheating of the upper wall; and (iv) a significant difference 
to the convective single-roll pattern generated under the same conditions in normal 
CO, is found, in the form of a double-roll convective structure. 

1. Introduction 
Heat transport in dense fluids is achieved by the basic mechanisms of convection, 

diffusion and radiation. However, in the case of low-heat-diffusing, near-critical fluids 
under zero-g conditions, it has been shown recently that a fourth mechanism of heat 
transport named the Piston Effect (PE) is responsible for very fast heat transport. This 
effect has been extensively studied and described in a number of papers, involving one- 
dimensional analytical (Zappoli 1992; Zappoli & Carles 1995) and numerical (Zappoli 
et al. 1990; Zappoli & Durand-Daubin 1994; Amiroudine et al. 1996) analyses, 
thermodynamical theory (Onuki, Hao & Ferrell 1990; Onuki & Ferrell 1990) and 
space-borne experiments (Guenoun et al. 1993; Bonetti et 01. 1994; Straub 1965; 
Straub & Nitsche 1991, 1993) in low-gravity conditions where buoyant convection is 
strongly decreased. The PE mechanism originates from the particular properties of 
near-critical fluids, and more specifically from their diverging isothermal compres- 
sibility and vanishing thermal diffusivity. It can be briefly described by the following 
steps: (i) when a confined, near-critical fluid is heated from the boundaries, a 
thin thermal boundary layer forms; (ii) the fluid in this layer expands strongly due 
to the large compressibility, and induces an adiabatic compression of the bulk fluid; 
(iii) temperature is homogenized very rapidly, as a result of the adiabatic compression. 
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The thermoacoustic nature of this effect is now well established as well as its limits since 
it has been shown that all the heat brought to the wall of a container filled with a near- 
critical pure fluid could ultimately be transferred to the bulk at the speed of sound 
when approaching the critical point (Zappoli & Carles 1996; Amiroudine et al. 1996). 

In connection with the heat-transport problem, the question which currently arises 
is whether this effect is still efficient under normal Earth gravity conditions or, in other 
words, if the fast heat transport observed on ground is due to the PE or to the very 
strong buoyant convection provoked by the high isothermal compressibility of near- 
critical fluids. However, beyond this question is the general problem of the description 
of convection, and more generally, of convective instabilities in hyper-compressible 
low-heat-diffusing dense fluids such as those encountered in near-critical conditions. 
Very little is known about the hydrodynamic behaviour of such systems. As a matter 
of fact, the hydrodynamics of critical fluids have not been developed by the critical- 
point community of physicists, and even the simpler situation of normally compressible 
non-Boussinesq fluids (such as perfect gases) has not been extensively studied from the 
hydrodynamic point of view. For example, Spradley & Churchill (1975) have studied 
pressure-driven (or thermoacoustic) motion which is generated by the local expansion 
of normally compressible fluid layers. They have shown that the thermally induced 
motion generated under microgravity conditions creates heat transport and thus 
enhances the global unsteady rate of heat transport, which remains of the same order 
of magnitude as diffusion. Paolucci (1982) has studied convection in strongly 
differentially heated cavities filled with a normally compressible non-Boussinesq gas 
using an acoustic filtering procedure. In addition to these studies of normally 
compressible media, in the early 1970s, a number of technical studies were devoted to 
the hydrodynamic behaviour of very compressible cryogenic supercritical oxygen, 
hydrogen or helium, which are known to be of a great technological interest. For 
example, Heinmiller (1 970) has numerically studied convective flows in cryogenic 
oxygen tanks to obtain a description of the pressure collapse which follows a fast 
mechanical destratification of a near-critical fluid stored under microgravity. However, 
because of the inadequacy of computational resources available at that time, it was not 
possible to identify the basic heat-transport mechanisms even though some early 
published papers contained interesting features strongly linked with the current 
findings. 

It is within the framework of the competition between thermoacoustic and buoyant 
convection that the problem of convection in hyper-compressible fluids is again of 
interest. Although no numerical solutions have been obtained with a reliable 
Navier-Stokes code written for a hyper-compressible near-critical fluid, some 
theoretical work has been done in an attempt to obtain stability criteria for fluid layers 
subjected to adverse temperature gradients (Gitterman & Steinberg 1970, 1971). More 
recently, a one-dimensional numerical description of a hydrodynamically stable 
cooled-from-below infinite layer (Boukari, Peg0 & Gammon 1995) has been given and 
the one-dimensional heat transport has also been studied under stable conditions 
(Zhong & Meyer 1995). Rather than examining the problem of a layer heated from 
below (with the unknown potential for Rayleigh-Benard instability), we choose to look 
at the simpler case of convection (driven by both buoyancy and thermoacoustic effects) 
in a box which is heated from the side. It is demonstrated that the bulk of the 
temperature equilibration in this situation is achieved by the PE and not by buoyant 
convection. It has also been found that, due to the very high compressibility, significant 
density gradients remain even after the thermal field has been nearly completely 
homogenized by the PE, leading to a quasi-isothermal convective motion in a pure fluid 
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which is then responsible for mass equilibration. In addition, a stagnation-point 
overheating effect has been observed, although the flow velocity is very low. The next 
Section presents the model and governing equations, 5 3 describes the numerical 
method, and results are discussed in 54. 

2. The model and governing equations 
2.1. The model 

As mentioned in the introduction, the main goal of this work is to investigate the 
competition between convective and thermoacoustic (PE) heat transport. We consider 
a square, two-dimensional cavity with a single, vertical, heated wall (on the left-hand 
side), the others being perfectly insulated (see figure 1). Under such conditions, the PE 
and buoyant convection both originate at the heated boundary while the other 
boundaries are not thermally active. This would not have been the case if one had 
considered, as in Zappoli & Carles (1995), an isothermal right-hand boundary which 
would have also led to a PE, but also, to a more complex situation without providing 
more information regarding the problem under study. The fluid is initially at rest and 
stratified in thermodynamic equilibrium such that 

where Ti  and TL are the initial and critical temperatures, respectively, and primes 
denote dimensional variables; ,u defines the proximity to the critical point. 

For the equation of state, we have chosen to use the van der Waals equation, 
although it is well known that it does not correctly describe the critical coordinates, 
namely it leads neither to the correct critical pressure nor to the correct critical 
exponents (i.e. the exponents describing the critical divergence of transport properties). 
Within the framework of the present work, however, this is not important since the 
pressure is involved in the equations only through its gradient, which is independent 
of the basic background pressure. Moreover, the use of this equation is consistent with 
earlier analytical results, and thus will allow comparison between them and the present 
findings. If necessary, when close to the critical point or for comparisons with 
experimental results, it is possible to use the restricted cubic model of Moldover et al. 
(1979) as the equation of state, although this has not been done in the present work. 
The transport equations have been chosen to be those of a viscous Newtonian heat- 
conductive fluid since the critical point is never approached so close as to render the 
Navier-Stokes equations invalid (Stanley 1971 ; Carles 1995). The van der Waals 
equation of state implicitly takes into account the divergence of the compressibility and 
of the heat capacity at constant pressure. In order to simulate the divergence of the 
thermal conductivity, a phenomenologic law has been introduced, in which the density 
dependence is not taken into account since departures from the critical density never 
exceed a fraction of a percent. If needed, more complete descriptions for heat 
conduction and/or heat capacities at constant pressure are available (Swinney & Henry 
1973). 

The following transport coefficients are considered : 

where A’, C; and p’ are the thermal conductivity (in which A = 0.75), the heat capacity 
at constant volume and the viscosity, respectively; the subscript 0 represents the value 
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FIGURE 1. The two-dimensional model. 

far from the critical point. The heat capacity at constant volume and the viscosity have 
been considered as constant and equal to the value for the perfect gas CO,. 

2.2. The governing equations 

As just mentioned, the governing equations are those of a Newtonian viscous heat- 
conducting van der Waals gas initially at rest and stratified, subjected to a boundary 
heating. One should note that since the initial temperature is rather far from the critical 
one (1 K), we face a small initial stratification. The problem of strong stratification 
encountered when closer to the critical temperature might be quite different. 

If the pressure is normalized with respect to the value it would have at the critical 
condition if the fluid were a perfect gas, and if the other variables are referred to their 
critical values, the governing equations can be written as follows : 

continuity (1) 
- + V . @ u )  aP = 0, 
at 

1 + V.@uu)  = - y- lVP+ € [VZU +$V(V. u)]  +-pg, aCO4 momentum ~ 

at F, 

energy 

a @ r )  CY 
~ + V - b u r )  = - (y  - 1) ( P  + ap2) (V - u)  + - V [{ 1 +A( T-  l)-0.5} VT] 

a t  P, 

The values of a and b in (4) (a = 9/8, b = 1/3) come from expressing the critical 
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coordinates as a function of a‘ and b‘ for the dimensional van der Waals equation, 
namely 

in which TL = 304.13 K and pi = 467.8 kg mP3. 
The following non-dimensional variables have been defined : 

where ch = (yR’TL)ll2 is the sound velocity for the perfect gas in which y is the ratio of 
specific heats and R’ = 188.8 J kg-l K-l is the perfect gas constant. 

One should note that the energy equation (3) embodies strong variations of the heat 
conduction coefficient and as shown by this equation, it goes to infinity as p-lI2 when 
T‘ approaches Ti. 

In (1E(3), E is a small parameter defined by E = P, t i l t;  where E = 2.6 x lo-’, t i  is the 
characteristic time of heat diffusion for the ideal gas, i.e. 

ti = L’,/K;, 

K; is the thermal diffusivity of the ideal gas at critical density and t i  is the characteristic 
acoustic time 

r, 
L’ 

t; = 
(yR’Ti”/’‘ 

In the case of CO, confined in a square cavity of side length of 10 mm, t; = 35 ms and 
t i  = 3 x lo3 s. It must be noted that t i  is not the characteristic time for diffusion in a 
supercritical fluid. Taking into account the vanishing thermal diffusivity of near-critical 
fluids, this characteristic time would be of order ti/,u1’2, which is even longer (Zappoli 
1992). 

The quantity P, = I(,/.; is the Prandtl number (vh is the kinematic viscosity) and 
1$, = c;/L‘gh is the acoustic Froude number (gh = 9.8 m sP2 is Earth’s gravity) where 
P, = 2.27 and 4 = 2.9 x lo3. 

Since the problem is to investigate the interaction between the PE and buoyant 
convection following a boundary heating, the characteristic time scale to be chosen to 
this end should be the shorter of the two, in order not to miss important possible 
interactions between them. The PE time scale defined by Zappoli (1992) is 

with 

The dimensional PE time scale is of the order of tenths for CO, a few K from T,, but 
much shorter as one gets nearer. The convective time scale (the characteristic time for 
convection to start), which depends on the kinematic viscosity, is also of the order of 
a tenth of a second. The PE time scale is thus taken as its characteristic time while 
velocity is normalized with respect to the characteristic velocity on that time scale, i.e. 
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The dimensionless initial conditions can be written as 
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p,(y) = 2 - eK(Y-l), T, = 1 + ,u, P,(y) = P,, + i,u[ 1 - eK(y-l)], u = v = 0, 

where K = 4gy/(9puF,) and Po, = $(l +,u)-i. The boundary conditions for the problem 
defined in the previous section are 

u = v = 0 at all walls, 

T(O,Y, t )  = H(t;71), 

aT aT aT 
-(l,y, t )  = -(x,O, t )  = -(x, 1,t)  = 0. 
ax aY aY 

The parameter 71 is the boundary-heating time scale which has been chosen to be that 
of the PE. In most experiments, the heating-law characteristic time is of the order of 
1 s, which corresponds to the order of magnitude of the PE characteristic time. 

The calculations were performed for supercritical CO, which is initially 1 K from the 
critical temperature and comparisons were made with the perfect gas at standard 
conditions, i.e. Th = 300 K and ph = 1.8 kg mP3. The boundary conditions for the 
perfect gas are the same as for a supercritical fluid and the initial conditions can be 
written as 

p o = l ,  T , = l ,  P o = l ,  u = u = o .  

3. Numerical method 
3.1. General description 

The numerical method used in this analysis is based on the finite-volume method with 
the SIMPLER algorithm which is the Revised-SIMPLE (Semi-Implicit for Pressure Linked 
Equations) algorithm of Patankar & Spalding (1972). The detailed developments and 
comparisons of these methods can be found in Patankar & Spalding (1972), Patankar 
(1980, 1985), Jang, Jetli & Acharya (1986), and Amiroudine et al. (1996). The variable 
‘power-law’ type (100 x 40) mesh follows a geometrical series with a power of 2.5 (see 
figure 2). Only suitable interpolation will determine values at the variable grid points. 
The domain is divided into regions and, in each region, one can refine the mesh in both 
directions. A staggered mesh has been developed where velocity components are 
defined on the sides of the cell and thermodynamic quantities at the cell centre, to avoid 
pressure oscillations (Patankar 1980). As we approach the critical point, the boundary 
layer becomes very thin and one needs a small grid size in order to have a relatively 
small cell Peclet number. In all our calculations, stability in terms of time step and grid 
size has been carefully tested. 

The numerical code we have used solves two-dimensional unsteady viscous 
compressible flows in rectangular cavities on variable meshes. It takes into account 
hypercompressible flows with physical properties which diverge at the critical point, as 
shown in (3). Our code has been carefully tested against some relevant benchmark 
cases. The results of such comparisons can be found in Amiroudine (1995). It is 
important to note here that, besides the fundamental role played by the physical 
phenomenology of the problem under study, we demonstrate the feasibility of 
simulating unsteady near-critical hypercompressible flows using the finite-volume 
method with the algorithms mentioned above. 

The numerical modelling of supercritical fluids which has been developed in recent 
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FIGURE 2. The numerical mesh (100 x 40). 

years, mostly for one-dimensional situations (Zappoli et al. 1990; Zappoli & Durand- 
Daubin 1994; Amiroudine et al. 1996) and multidimensional numerical studies have 
not previously been performed for this problem with the method of acoustic filtering 
described below. 

3.2. Acoustic filtering 

As is the case for normally compressible flows, the acoustic-filtering procedure is 
necessary to reduce the computational time when an acoustic-wave description is not 
needed. In fact, without such filtering the semi-implicit character of the present 
algorithm would not be able to reduce the time step (compared to an explicit one) 
(Spradley & Churchill 1975) since the time-step reduction is governed mainly by 
acoustic phenomena and not by stability criteria. On the other hand, as pointed out by 
Paolucci (1982), for small Mach numbers, implicit schemes making use of relaxation 
methods are relatively inefficient for time-step reduction and overall pressure changes 
since the relaxation of long-wavelength errors is a slow process in the low-Mach- 
number limit. 

The thermodynamic field is expanded in terms of the small Mach number (Ma);  thus, 
the pressure is written, e.g. 

P = P(O) + Wa P(l) + 0(Wa), 

and all other variables are expanded in a similar manner. This results in the leading 
term for pressure being a function of time only and the contribution of the pressure to 
the momentum equations comes from the O(W,) term. 

In practice, in our numerical approach, we have split the pressure as follows: 

p = m +P’(X, v), 
where the leading term F(t) is spatially homogeneous and the perturbation term, which 
is of order Wa, appears only in the momentum equations. 

The splitting of the pressure has resulted in one more unknown than the number of 
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available equations and an extra equation is needed to determine the static pressure 
4 t ) .  This pressure is determined by requiring mass conservation at each time step, 

p d ~ t )  = J Podvo, 
vo 

where V represents the volume of the cell and subscript 0 refers to initial values. The 
method of filtering sound is used for time scales greater than acoustic time scales. 
Another way to determine this static pressure (Paolucci 1982) is to use the continuity, 
energy and state equations and integrate dF/dt over the volume of the cell. 

It must be emphasized here that the use of the acoustic-filtering method is consistent 
with theoretical predictions concerning the evolution of pressure. Indeed, it has 
recently been shown in a one-dimensional geometry (Zappoli & Carles 1995) that, 
throughout the evolution of the fluid flow by PE, the pressure could be split into a 
spatially homogeneous term plus a small acoustic perturbation. The pressure splitting 
used in the numerical scheme simply reproduces this asymptotic property. 

4. Results and discussion 
In what follows, the results of the computations just described are analysed with 

special emphasis on the heat- and mass-transport mechanisms leading to thermal and 
mechanical equilibrium in the cavity after the temperature of the left-hand sidewall is 
increased by 10 mK over a period of 1 s. In order to examine the difference between 
the normal-gas response and that of a supercritical fluid, the same problem has been 
solved with the same numerical code for CO,, assuming it behaves as a perfect gas. 
Although the computations are performed in terms of dimensionless variables, it is 
more convenient to discuss results in terms of dimensional quantities. 

4.1. Temperature equilibration 
We observe in figure 3(b) that at 4.5 s, temperature equilibrium in the cavity is almost 
achieved through the PE, while the effect of buoyancy is restricted to a low-density 
thermal plume visible at the hot wall and top-left part of the cavity. This part of the 
flow field will be described more in detail in 34.3. On the other hand, the perfect gas 
thermal field shown in figure 3 (a) for the same time is inhomogeneous because of more 
rapid thermal diffusion coupled with very weak convection. The density profiles 
corresponding to these two cases are shown in figure 4. The homogeneous temperature 
and density fields in the bulk of the cavity for the supercritical fluid at a time much 
shorter than the thermal-diffusion time are the signature of the PE and show that there 
is no significant interaction between the buoyant convection and the PE. 

In order to analyse the fluid-dynamic mechanisms that occur under normal-gravity 
conditions, it is helpful to recall what happens under zero-gravity conditions (Zappoli 
1992; Zappoli et al. 1990; Onuki et al. 1990; Boukari et al. 1990). The very rapid 
temperature equilibration in the bulk is due to the strong expansion (decrease in 
density) of the fluid contained in the thermal boundary layer due to the very large 
isothermal compressibility of the near-critical fluid. This expansion produces mass 
addition in the bulk phase and also adiabatic compressive heating. When gravity is set 
to its ground value, as soon as mass depletion occurs in the thermal boundary layer a 
buoyant vertical-velocity component appears which does not significantly change the 
thermal structure of the thermal boundary layer (except in the upper left corner), since 
this vertical velocity is parallel to the isotherms. The thermal structure of the boundary 
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FIGURE 4. Density difference field in kg m-3 for (a) the perfect gas and (b) the supercritical fluid 
for lg at 4.5 s. 

layer and thus the net mass loss out of it, is not significantly changed from the one- 
dimensional situation (Zappoli 1992; Zappoli & Durand-Daubin 1994; Zappoli et al. 
1990; Amiroudine et al. 1996), although the buoyant vertical velocity is much higher 
than the horizontal one, as can be seen in figure 5,  which shows the velocity at the end 
of the heating period (at t = 1 s). The total mass transferred to the bulk is thus nearly 
convection-independent and this is the reason why the PE is responsible for 
temperature equilibration of the bulk even in the presence of convection. 

This result seems to be inconsistent with measurements performed by D. Beysens 
(1995, personal communication), who reports that the efficiency of the PE in 
homogenizing temperature would be less on ground than under microgravity 
conditions. However, the geometrical configuration considered here is quite different 
from in Beysens's experiments (heating is provided by a small spherical thermistor 
immersed within the fluid), and the boundaries are at constant temperature. Therefore, 
the thermal plume rising from the thermistor may interact with the upper boundary in 
such a way (i.e. through a PE from the top wall) to reflect back the energy it just 
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FIGURE 5. Velocity field for the supercritical fluid for lg at 1 s. The maximum vector plot is 
7.2 x lo2 pm s-l. 

received, and thus to decrease the thermoacoustic coupling. This particular point has 
to be checked independently but seems consistent with previous theoretical and 
experimental results concerning the PE in thermostated cells (Zappoli & Carles 1995; 
Garrabos et al. 1996). 

The temperature is plotted in Figure 6 ( a )  as a function of x at y = 0.5 for several 
times during the temperature equilibration period for both the supercritical fluid and 
the perfect gas. The supercritical fluid exhibits the characteristic profiles of the PE (a 
very thin thermal boundary layer followed by a thermally homogeneous bulk) and the 
perfect gas shows a diffusive profile. For the density field, we observe some very 
interesting features as seen in figure 6(b), which shows profiles for both the supercritical 
fluid and the perfect gas near the heated wall at y = 0.5 for two times belonging to the 
PE period. The first observation is that the density of the supercritical fluid is four 
orders of magnitude larger than that for a perfect gas owing to the very high 
compressibility of the supercritical fluid. The second is that the boundary layer is much 
thinner for the supercritical fluid than for the perfect gas. The direct consequence of 
these two features concerning the density field is, of course, the structure of the buoyant 
convection field. 

Figure 7 shows the vertical velocity as a function of x at y = 0.5 for the supercritical 
fluid and the perfect gas at a time of 1 s. The result is a much larger vertical velocity 
occurring in a much thinner boundary layer for the supercritical fluid than for the 
perfect gas. Secondly, while the driving force for convection (the density gradients) fills 
the entire cavity for the perfect gas, thus producing a velocity field of homogeneous 
magnitude, the driving force for convection in the supercritical fluid is limited to a very 
thin boundary layer. However, a significant upward velocity extends far beyond this 
boundary-layer thickness, which shows that the fluid located near the boundary layer 
is drawn upward by viscous coupling. This is confirmed in figure 8 where velocity 
vectors are shown for the two cases at a time of 4.7 s. While the perfect gas exhibits a 
classical circular one-roll pattern, the supercritical fluid exhibits a pattern reminiscent 
of zero-gravity Marangoni (Carpenter & Homsy 1990) convection (in which the left- 
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FIGURE 6. (a) Temperature difference and (b) density difference, for the perfect gas (---) (times 
lo4 in b) and the supercritical fluid (-) as a function of x at different times and at y = 0.5. 

hand-side heated wall would be replaced by a free surface). It should also be 
emphasized that the intensity of convection for the supercritical fluid is about 3 x lo2 
larger for the supercritical fluid than for the perfect gas. 

Based on the results presented in figures 7 and 8, we return to the initial question 
concerning the mode of heat transport in a supercritical fluid under normal gravity 
conditions, namely: (i) is the PE responsible for fast heat equilibration?; (ii) if yes, as 
it currently appears to be, is there still convection?; and (iii) if yes, as is the case again, 
why is this so, since the thermal field is homogeneous? The answers to these questions 
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FIGURE 7. Vertical velocity for the supercritical fluid (-) and the perfect gas (---) (times 10) 
as a function of x at 1 s. 

are linked to the density-relaxation problem, which is currently being investigated, 
both theoretically and experimentally, on the ground (Boukari et al. 1995; Zhong & 
Meyer 1995) and under microgravity conditions (Bailly, Ermakov & Zappoli 1996; 
R. A. Ferrel 1994, personal communication). The present findings concerning mass 
equilibration are discussed in the following section in the light of the current studies. 

4.2. Density homogenization 
The results of the present computations, which show thermal equilibration occurring 
on a much shorter time scale than that for density, are in agreement with recent 
observations by others. Onuki et al. (1990) have shown that after boundary heating 
under microgravity conditions, density equilibration in the bulk should ultimately 
follow the long exponential diffusive tail of the temperature inhomogeneity. Guenoun 
et al. (1993) have reported that a phase-separating pure fluid which is heated again 
above its critical temperature exhibits long-lasting density inhomogeneities, although 
the bulk temperature has risen homogeneously above the critical temperature due to 
the PE. Boukari et al. (1995) have shown by numerical solution of the one-dimensional 
convectively-stable flow equations that the formation, on the ground, of the density 
profile following a temperature quenching of the lower boundary, could take hours, 
whereas temperature is equilibrated very quickly by the PE. Similar observations have 
been reported in experiments by Zhong & Meyer (1995). Also it has been shown (Bailly 
et al. 1996) that, under microgravity conditions, the density homogenization in the 
bulk phase following boundary heating occurs in two periods. The first is a fast period, 
already mentioned by Zappoli (1992), and described by Zappoli & Durand-Daubin 
(1994) and Onuki & Ferrell (1990), during which density decays from its initial value 
a /p  (where a is the order of magnitude of the temperature increase at the boundary and 
p the initial distance to the critical point) to a. This is followed by a slow period (which 
is the new finding), driven by the very long thermal-diffusion process (since the thermal 
diffusivity approaches zero for a supercritical fluid), during which density relaxes from 
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FIGURE 8. Velocity field for (a) the supercritical fluid and (b) the perfect gas for lg at 4.7 s. The 
maximum vector plot is 2.2 x lo3 pm s-' in (a) and 6.5 pm s-l in (b). 

a to ap, that is, to equilibration, while the temperature difference, which decreased 
from a to ap during the PE period, decreases further to ap2. 

The difference between the equilibration times for temperature and density is 
therefore shown to arise from the large order of magnitude difference between the 
temperature and density perturbations. The answer to the question regarding the 
presence of convection after the thermal field is uniform thus follows from the 
preceding discussion : owing to the very larger compressibility, the remaining 
temperature inhomogeneity (of order up) left by the PE gives rise to a significant 
density inhomogeneity which relaxes very slowly, together with heat diffusion, leaving 
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FIGURE 9. (a) Temperature difference and (b) density difference for the supercritical fluid as a 
function of x at different levels of gravity at t' = 16.6 s. 

time for gravity to generate significant convection in a quasi-isothermal medium. We 
thus observe a convection motion occurring in a quasi-isothermal, pure fluid which 
could be called 'isothermal critical convection'. On the ground, given the long heat- 
diffusion time scale, the return flow has time to compensate the mass depletion still 
existing in the heated region, thus speeding up the mass equilibration process. In 
microgravity, equilibration of the density field takes even longer since only diffusion 
occurs. This can be seen in figure 9(b), which shows clearly that, under increasing 
gravity, the mass depletion in the thermal boundary layer is reduced. It must be also 
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which will be discussed in the next section. It should be noted that the fluid velocity in 
the supercritical fluid, more than ten minutes after the heating has been stopped, is still 
more than ten times its magnitude in the perfect gas only some seconds after the end 
of the heating period. The convection roll intensity then decreases slowly in time on the 
diffusion time scale. The calculation has not been continued to a state of uniform 
density due to the required computational time and the lack of additional insight it 
would bring to the problem. 
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4.3. Stagnation-point eflect and the two-roll pattern of isothermal 
quasi-steady critical convection 

The interaction between the thermal plume and the upper left corner of the cavity that 
begins to occur within the PE time scale mentioned in $4.1, requires additional 
discussion. As shown on the temperature plots, this is a very hot region, even hotter 
than the boundary itself. This is clearly not an artifact of the numerical procedure, 
since mesh refinement effects in the corresponding region as well the influence of time 
step on the overheating of the upper wall have been carefully checked. Therefore, the 
following mechanism is proposed. During the rise of the supercritical fluid particle 
along the heated wall, the gain in kinetic energy for a very small temperature increase 
at the boundary is much higher than it would be in a perfect gas, due to the strong 
density decrease in the thermal boundary layer. On the other hand, the vertical pressure 
gradient is quite small (because of the low Mach number of the flow; see $3.2), so that 
the increase in kinetic energy results from the work of the buoyancy force. When the 
thermal plume reaches the upper, insulated boundary, a turning flow region forms that 
surrounds a stagnation point where kinetic energy turns into internal energy (thus 
explaining the hot spot) and into work of pressure forces in expanding the fluid because 
of the high isothermal compressibility. To deepen the understanding of this effect, it is 
worth considering what happens in other situations. 

In high-speed flows of normally compressible fluids, the transformation of kinetic 
energy into internal energy comes from the dynamic effects of the fluid that cause 
pressure gradients according to the velocity-pressure coupling. In low-speed convective 
flows, the velocity-pressure linkage weakens in the low-Mach-number limit and the 
pressure-source term in the internal-energy equation is negligible owing to the 
moderate compressibility. Therefore, temperature is governed by diffusion and 
convection, density is coupled with temperature and it is thus unusual to find this effect 
in Boussinesq fluids. 

In low-Mach-number hypercompressible flows of a supercritical fluid, the pressure 
is still homogeneous because of the weak velocity-pressure coupling (as for normal 
gases), but due to the high thermal expansion coefficient, there is an enhancement of 
the density-temperature coupling. This leads to a strong velocity-temperature coupling 
through the velocity-divergence term in the pressure-work forces of the internal-energy 
balance which is responsible for the overheating of the upper wall. However, the 
increase in the kinetic energy is not a necessary condition for finding transient 
temperature overshooting, as for example, reported by Zhong & Meyer (1995) and 
Boukari et al. (1995) for quite different situations. When the top and bottom plates are 
both heated (Boukari et al. 1995), during the rearrangement of the one-dimensional 
density profile due to stratification, both experiments and one-dimensional calculations 
lead to a bulk top temperature which overshoots the equilibrium temperature. In such 
a situation, the kinetic energy remains very small and cannot be responsible (through 
the transfer to internal energy) for the temperature increase as in the present case. 
However, if the kinetic energy is negligible, the velocity field is responsible for the mass 
transfer from the boundary layer to the bulk that causes a homogeneous pressure 
increase in the bulk. This pressure increase converts its mechanical energy into 
temperature in an inhomogeneous way, owing to the expansion coefficient which varies 
with density and thus with height. It is likely that convection phenomena very close to 
the critical point exhibit new thermal behaviour coming from both the dependence of 
the thermodynamic coefficients on density and from dynamic effects due to the increase 
in the kinetic energy. 
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When the gravity force is smaller and acts for a shorter time, as explored by Bravais, 
Zappoli & Mignon (1993), the temperature of the upper wall does not exceed that of 
the heated wall, since the work done by gravity is much smaller. The existence of a spot 
on the upper wall which is hotter than the heated boundary is quite important since it 
appears to be responsible for the two-roll structure of the long-lasting quasi-isothermal 
convection. The hotter fluid at the insulated boundary in the upper left corner expands 
horizontally, but as it flows toward the cooler heated boundary it becomes heavier and 
begins to flow downward; this can be seen in figure 10 where a counterclockwise roll 
is appearing in the upper left corner. Then, as heat is slowly carried away by diffusion, 
the hot region widens and so does the corresponding roll (figure 11). At the same time, 
the return flow decreases the density depletion of the thermal boundary later, and thus, 
the magnitude of the kinetic energy increases there. The hot region thus tends to 
disappear as time goes by, both by diffusion and by the decrease in the 
thermomechanical coupling. 

5 .  Conclusions 
A two-dimensional unsteady numerical code has been developed which is able to 

simulate hypercompressible low-Mach-number buoyant-convection flows. This has 
been applied to a particular problem involving near-critical fluids subjected, under 
normal gravity conditions, to heat addition at a boundary. The results of these 
computations have identified some important basic mechanisms of heat transport, 
mass equilibration and the existence of interesting convective structures. As expected, 
the description of convective motion in a dense liquid which can be lo4 times as 
compressible as a perfect gas has been a numerical challenge. The numerical solution 
of the Navier-Stokes equations for this case has been successfully achieved using a 
finite-volume method with the SIMPLER algorithm, together with acoustic filtering 
which proved to be the most efficient in terms of precision and computational cost. 

The results demonstrate that the high compressibility of near-critical fluids and their 
low heat diffusivity lead to a decoupling of the heat- and mass-equilibration processes. 
The PE initially homogenizes the temperature on a very short time scale (shown to be 
convection-independent) compared to diffusion and identical to the microgravity PE 
time scale. At the end of this PE time period, the thermal field is almost completely 
homogenized while density differences are still significant owing to their very large 
initial value. These remaining density inhomogeneities then relax very slowly to 
equilibrium by (slow) thermal diffusion, providing time for convection to begin. This 
is similar to what is observed for a normal gas, but convection persists for a very long 
time in the case of a supercritical fluid in an already thermalized fluid. We have termed 
this phenomenon quasi-steady isothermal critical convection and its structure has been 
explored so as to emphasize its peculiarities vis u vis normal gases under the same 
heating conditions. Whereas normal gases exhibit a classical single-roll structure, near- 
critical convection first exhibits a Marangoni-like structure during the fast PE period, 
then (owing to the presence of the overheating of the upper, insulated boundary due 
to a surprising stagnation point effect), a long-lasting isothermal convection with an 
original counter-rotating two-roll pattern. This work clearly points out the important 
role played by the critical behaviour of the transport coefficients in the formation of 
convective structures in near-critical fluids, which may have implications for other 
phenomena such as instability or the onset of turbulence. 
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